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In terms of computing time, adjoint methods offer an attractive alternative for computing
gradient information, required, for example, for optimization. Together with this very favor-
able temporal complexity result, however, comes a memory requirement that is in essence
proportional to the operation count of the underlying function, for example, if algorithmic
differentiation is used to provide the adjoints. For this reason, checkpointing approaches in
many variants have become popular. This paper analyzes an extension of the so-called bino-
mial approach to cover also possible failures of the computing systems. Such a measure of
precaution is of special interest for massive parallel simulations and adjoint calculations where
the mean time between failure of the large-scale computing system is smaller than the time
needed to complete the calculation of the adjoint information. We describe the extensions
of standard checkpointing approaches required for such resilience, provide a corresponding
implementation and discuss numerical results.

Keywords: Binomial Checkpoining, Resilience, Computation of Adjoints

1. Introduction

The use of adjoint methods allows the computation of gradient information within a time
that is only a small multiple of the time needed to evaluate the underlying function it-
self. As soon as the considered process is nonlinear, however, the memory requirement to
compute the adjoint information is in principle proportional to the operation count of the
underlying function, see, for example, [6, Sec. 4.6]. In Chap. 12 of the same book, several
checkpointing options to reduce this high memory complexity are discussed. Checkpoint-
ing strategies use a small number of memory units (checkpoints) to store the system state
at distinct times. Subsequently, the information that is needed for the adjoint computa-
tion but is not available is recomputed by using these checkpoints. Several checkpointing
techniques have been developed, all of which seek an acceptable compromise between
memory requirement and runtime increase.

For this paper, we assume that the evaluation of the function of interest has a time-step
structure given by

xi = Fi(xi−1, ui−1), i = 1, . . . , l , (1)

for a given x0, where xi ∈ Rn, i = 0, . . . , l, denote the state of the considered system and
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ui ∈ Rm the control. The operator Fi : Rn ×Rm 7→ Rn defines the time step to compute
the state xi. The process to compute xl for a given x0 is also called forward integration.
In order to optimize a specific criterion or to obtain a desired state, the cost functional

J(x(u), u) = J(x, u)

measures the quality of x(u) = (x1, . . . , xl) and u = (u1, . . . , ul), where x(u) depends
uniquely on the control u if the involved functions are smooth enough. For applying a
derivative-based optimization method, one could use an adjoint integration of the form

ūl = 0 , x̄l given

(x̄i−1, ūi−1) = F̄i(x̄i, ūi, xi−1, ui−1), i = l, . . . , 1, (2)

where the operator F̄i denotes the adjoint time step. Subsequently to or concurrently
with the adjoint integration, the desired derivative information Ju(x(u), u) can be re-
constructed from x̄. As can be seen, the information of the forward integration (1) is
needed for the adjoint computation (2). To provide this information within only a lim-
ited amount of memory, we use the binomial checkpointing approach proposed in [4, 5]
as a basis to develop a checkpointing approach that can also handle a failure of the
computing system. Such techniques include a foreseen suspension, where the application
should suspend itself gracefully after completing the set number of forward or adjoint
time steps. However, an unforeseen failure also has to be covered, where the application
is killed externally because of machine failure or expired time allocation. This scenario
occurs when running the MIT General Circulation Model (MITgcm, [1, 2]) on ARCHER,
a UK-based supercomputer. MITgcm executes for around 351,000 time steps to simulate
one year of physical time. This requires around 24 hours of wall-clock computation time.
Because the mean time between failure of ARCHER is less than 24 hours, administrative
policies that require applications execute for a fixed time allocation T , such as 6 hours at
a time, before they are suspended. Typically, an application can be restarted from sus-
pension when checkpoints containing intermediate data are available and the application
is aware of its position in the overall computation.

An additional aspect that has to be taken into account is the actual location where
checkpoints are stored. Checkpoints stored in memory can be lost on failure. For the sake
of resilience or because future supercomputers may be memory constrained, checkpoints
may have to be stored to disk. Therefore, the access time to read or write a checkpoint
is not negligible, in contrast to the assumption frequently made for the development
of checkpointing approaches. A few researchers have extended checkpointing techniques
to a hierarchical checkpointing; see, for example, [3, 8, 9]. To derive a checkpointing
technique that incorporates resilience, however, we ignore this hierarchical nature and
assume throughout that the writing or reading process for a checkpoint is performed
asynchronously such that it does not interfere with the adjoint computation.

This paper has the following structure. In Section 2, we describe binomial checkpoint-
ing and its implementation in a software system called revolve. Section 3 presents resilient
binomial checkpointing, which is the adaptation of binomial checkpointing to cover re-
silience. The implementation of this approach, called resrevolve is also discussed. Theo-
retical results with respect to the temporal complexity of the resilient binomial check-
pointing are given in Section 4. In Section 5 we discuss other checkpoint approaches for
resilience. In Section 6 we draw conclusions and briefly discuss future work.
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. . .
cp schedule=new Schedule(l,c)
do

whatodo = cp schedule–>next()
switch(whatodo)

case advance: for cp schedule–>oldcapo < i ≤ cp schedule–>capo
forward(x, u)

case takeshot: store(x, xstore, cp schedule–>curr checkpoint)
case firsturn: eval J(x, u)

init(bar u, bar x)
adjoint(bar x, bar u, x, u)

case youturn: adjoint(bar x, bar u, x, u)
case restore: restore(x, xstore, cp schedule–>curr checkpoint)

while(whatodo <> terminate)
. . .

Figure 1. Implementation of the binomial checkpointing algorithm with calls to the revolve routines

2. Binomial Checkpointing Using revolve

For large-scale applications such as the MITgcm, only a limited number of intermediate
states can be stored as checkpoints because of limited storage or the non-negligible time
required to store intermediate states. Hence, one obvious question is where to place these
checkpoints during the forward integration in order to minimize the amount of required
recomputations. It was shown in [5] that a checkpointing scheme based on binomial
coefficients yields for a given number of checkpoints the minimal number of time steps
to be recomputed. The implementation of this optimal binomial checkpointing strategy
is a software routine called revolve, that provides a data structure schedule to steer the
checkpointing process and the storage of all information required for this purpose. Then,
the forward integration as well as the corresponding adjoint computation is performed
within a do-while loop of the structure in Fig. 1, where l denotes the number l of time
steps of the forward simulation and and c the number c of checkpoints.

Hence, the routine revolve determines the next action to be performed that must be
supported by the application being differentiated. For example, this action may be the
execution of a part of the forward integration based on the routine forward(x,u), where
x represents the state of the system and u the control, one step of the actual adjoint
computation performed in the routine adjoint(bar x,bar u,x,u), where bar x denotes the
adjoint state and bar u the adjoint control. For the checkpointing approach, the cur-
rent state must be stored as a checkpoint; that is, execute the routine store(x, xstore,
cp schedule–>curr checkpoint), where xstore represents an array to store system states
and cp schedule–>curr checkpoint is the number of the entry, where the checkpoint has
to be stored. In order to recompute the required intermediate information a checkpoint
has to be read, that is, restore(x, xstore, cp schedule–>curr checkpoint) has to be per-
formed.

We note that this checkpointing approach is completely independent of the method
that is actually used to provide the adjoint information. As can be seen, as soon as
an adjoint computation is available, only a limited effort is needed to combine this with
binomial checkpointing in order to reduce the memory requirement. We stress that revolve
provides so-called serial checkpointing, which means that only one forward time step or
one adjoint step is performed at each stage of the adjoint computation. This is in contrast
to so-called parallel checkpointing techniques where several forward time steps might be
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performed in parallel even in conjunction with one adjoint step.
Up to now we have assumed that for the serial checkpointing the computation of the

forward time step and the adjoint step are free of failures. In reality, the computation of
the forward step or the adjoint step may be performed heavily in parallel, that is, it may
be evaluated on a large-scale computer system. This is precisely the situation where we
have to take resilience into account and therefore an appropriately adapted extension of
binomial checkpointing is required.

3. Binomial Checkpointing for Resilience

The ability to recover from a possible failure poses two additional challenges for the check-
pointing scheme. First, the distance between two checkpoints should not be so large that
a restart of the computation is too costly. Hence, resilient binomial checkpointing bounds
the distance of two checkpoints in terms of the number of time steps that are performed
before the next checkpoint is set. Second, since a failure may also occur during the ad-
joint computation, the adjoint state has to be checkpointed as well. Therefore, from
now on we will distinguish between state checkpoint and adjoint checkpoints. Because
of the nature of the adjoint computation, only one adjoint state is required to restart
the adjoint computation. Since the adjoint state itself is assumed to be large, however,
it is not possible to checkpoint every adjoint state computed. Therefore, resilient bino-
mial checkpointing defines a distance between these so-called adjoint checkpoints. This
distance corresponds to the number of adjoint steps performed, after which the current
adjoint state is stored again. The resilient binomial checkpointing approach implemented
in resrevolve uses resilience distance for storing the maximal number of forward time steps
between two checkpoints and adjoint distance for storing the number of adjoint steps per-
formed before the current adjoint state is stored again.

Internally, only the maximal distance between two state checkpoints, i.e., the value
of resilience distance interferes with the optimal binomial state checkpointing approach.
To limit the number of time steps between two consecutive checkpoints, first the dis-
tance required for the optimal, i.e., binomial checkpointing, is computed. This number
is then compared with the value of resilience distance. If the value of resilience distance is
smaller than the number of time steps chosen by optimal binomial checkpointing, only
resilience distance steps are performed despite the fact that this might lead to a subopti-
mal checkpointing schedule. This comparison is performed each time a state checkpoint
has to be stored. Therefore, resrevolve implements the optimal checkpointing approach
whenever possible. An analysis of this possibly suboptimal checkpointing approach is
presented in Sect. 4.

If a failure actually occurs, one faces two possibilities. First, the failure may happen
during the forward integration. Then, the computation can just restart at the last check-
point stored. Second, the failure may happen after the start of the adjoint computation.
Then the checkpoint distribution at the time of the failure may differ from the one when
the last adjoint checkpoint was written. As a small example we consider the case when
l = 100 time steps are performed during the forward integration, five state checkpoints
can be stored, the resilience distance is 30 and an adjoint checkpoint is stored every 12
adjoint steps. With standard binomial checkpointing, the following states would serve as
checkpoints during the first forward integration of the state:

Checkpoint distribution at first adjoint step: 0 45 70 86 95

as illustrated also in Fig. 2. As can be seen, there are more than 30 time steps between
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Figure 2. Checkpoint distribution at first adjoint step using regular revolve

0 30 60 80 94 100

100

Figure 3. Checkpoint distribution at first adjoint step using resilient revolve
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Figure 4. Checkpoint distribution at 64th adjoint step

0 30 44 51 56

100887664

Figure 5. Checkpoint distribution at breakdown

the first and the second state checkpoint, violating the bound of 30 for the resilience
distance. Using the resilient binomial checkpointing, one has the following.

Checkpoint distribution at first adjoint step: 0 30 60 80 94

as shown also in Fig. 3. Hence, the desired resilience distance is taken into account.
Assume now, that a breakdown happens directly after the computation of the 57th
adjoint step. Because of the chosen distance between to adjoint checkpoints, the last
adjoint checkpoint contains the adjoint state 64 and the seven adjoint states 63 to 57
are lost. Therefore, the adjoint computation has to be restarted at the adjoint state 64.
However, we face the following difficulty with respect to the available state checkpoints:

Checkpoint distribution at 64th adjoint step: 0 30 60 64 65
Checkpoint distribution at breakdown: 0 30 44 51 56

See also Figs. 4 and 5 for an illustration. Therefore, to recover the seven adjoint steps
that were lost because of the breakdown, we cannot just restart resrevolve at the current
checkpoint distribution.

To handle this situation, we designed resevolve such that the current checkpointing
distribution, the checkpointing distribution that was available when the last adjoint
checkpoint was taken, and all information required to restart resrevolve at the last adjoint
state available is written to two files when a breakdown occurs. One of the files stores all
information required from the data structure cp schedule; the other one stores information
about the state such as the actual values contained in the checkpoints.
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. . .
cp schedule=new Schedule(l,c)
cp schedule–>set resilience distance(distance resil);
cp schedule–>set adjoint distance(distance adjoint);
if files exist {

state–>init(. . . )
reconvene revolve internals(. . . ) }

do
whatodo = cp schedule–>next()

switch(whatodo)
. . .
case takeshot: store(x, xstore, cp schedule–>curr checkpoint)

last checkpoint stored = cp schedule–>getcheck()
last state stored = cp schedule–>getcapo()

case firsturn: eval J(x, u), init(bar u, bar x), adjoint(bar x, bar u, x, u)
last adjoint stored = cp schedule–>getcapo()
store(bar x, bar u,bar xstore,bar ustore)

case youturn with check: adjoint(bar x, bar u, x, u)
last adjoint stored = cp schedule–>getcapo()
store(bar x, bar u,bar xstore,bar ustore)

. . .
while(whatodo <> terminate)
. . .

Figure 6. Implementation (resrevolve) of the resilient binomial checkpointing algorithm

Therefore, when starting an adjoint computation, one first has to check whether these
files are available. In this case, one has to reconvene a previous adjoint computation.
If the two files are not present, the adjoint computation just starts and the usual ini-
tialization of resrevolve is performed. The adjoint computation with resilient binomial
checkpointing as illustrated above is implemented as shown in Fig. 6, where only the
actions modified compared with Fig. 1 are detailed. As can be seen, in addition to the
required initializations only one new action is introduced, namely, the execution of one
adjoint step in combination with the storage of the current adjoint state. Hence, if one
has already set up the adjoint computation with the original binomial checkpointing,
remarkably few changes are needed in order to adapt it for resilience purposes.

4. Analysis of Binomial Checkpointing with Resilience

4.1 Correctness of Adjoint Computation

To verify the correctness of the adapted checkpointing approach implemented in resre-
volve, we consider the adjoint computation for the following small test case

min J(x, u) with J(x, u) ≡ x2(1),

s.t. x′1(t) = 0.5x1(t) + u(t), x1(0) = 1

x′2(t) = x1(t)2 + 0.5u(t)2, x2(0) = 0

t ∈ [0, 1]
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Figure 7. Complexity results and first three checkpoint distances for 10,000 time steps

adapted from an example proposed by Hager [7]. For this optimization problem, the
adjoint can be derived analytically, yielding the following.

λ′1(t) = −0.5λ1(t)− 2 ∗ x1(t)λ2(t) λ1(1) = 0

λ′2(t) = 0 λ2(1) = 1

Hence one can verify the correctness of the adjoints computed with resrevolve, that is,
including the (repeated) restart using the information stored in the additional files. In-
deed, we tested and verified the correctness of the adjoint computation using resrevolve
for up to 700,000 time steps and break downs occurring at numerous different places.

4.2 Analysis of Runtime Complexity

An important open point is the temporal complexity of the checkpointing for resilience
implemented in resrevolve compared with the one of the optimal binomial checkpoint-
ing. As a representative observation, Fig. 7(a) illustrates with a solid line the additional
recomputations of time steps needed for 10,000 steps and a varying number of state check-
points. The additional recomputations needed by the binomial checkpointing approach
that incorporates resilience are illustrated with dotted lines for the resilience distances of
200, 300, 400, and 500 steps. Here, we note that the number of checkpoints c and the re-
silience distance d cannot be chosen completely independently from each other. Because
d is the maximal number of time steps between two consecutive checkpoints, it must
hold for the forward integration comprising l time steps to be adjointed that l ≤ d · c.
This bound limits the resilience distance from below for a small number of checkpoints,
as illustrated in Fig. 7(a). If l is close to the upper bound d · c, many recomputations
have to be performed since this corresponds to the strategy of complete recomputation
for a large part of the forward integration. This explains the high number of additional
time steps required for a c, d combination where the product of both values is close to l.
On the other hand, we can be see from this example that the resrevolve interferes with
the optimality of revolve only if the number of state checkpoints is less than 0.6% of the
computed intermediate states.

At first sight this might be a little surprising, especially because the resilience distance
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Figure 8. Two checkpointing strategies and resulting checkpoint distances for 10 000 time steps

is considerably smaller than the distance of the checkpoints chosen by revolve, as illus-
trated in Fig. 7(b), for the first four checkpoints to compute the adjoint of 10,000 steps
with a varying number of state checkpoints.

To explain the surprisingly good temporal complexity of the binomial checkpointing
for resilience implemented in resrevolve, we must examine the strategy to place the next
state checkpoint l̂. For a given number of time steps l the adjoint of which has to be
computed and for a given number of state checkpoints c, let r be the unique integer such
that

β(c, r − 1) < l ≤ β(c, r) ≡
(
c+ r

r

)
(3)

holds, where we assume β(c, r) = 0 for r < 0. It was shown in [5] that then no time step
is executed more than r + 1 times. Therefore, the integer r is also called the repetition
number. As shown in the same paper, for almost all cases numerous possibilities exist,
since using all states l̂ fulfilling

max{β(c, r − 2), l − β(c− 1, r)} ≤ l̂ ≤ min{β(c, r − 1), l − β(c− 1, r − 1)} (4)

as the next state checkpoint leads to the minimization of the number of time steps to
be executed. The application of this rule in a recursive way then yields a checkpointing
strategy to compute the adjoint with the least possible number of recomputations. The
possible choices of l̂ are illustrated in Fig. 8(a) as a large, light-gray diamond. In addition
to this complexity measure, one can minimize the number of times a state checkpoint is
written; see [5, Prop. 2]. The corresponding possible choices of l̂ are illustrated by the
two small diamonds in dark gray in Fig. 8(a). The approach chosen by revolve takes both
criteria into account and is illustrated by the blue line in Fig. 8(a).

We note that the distance between two consecutive state checkpoints has absolutely
no influence on the two optimality criteria described above. From a resilience point of
view, an obvious alternative strategy for choosing the next state checkpoint minimizing
only the number of time steps is illustrated as a dashed black line in Fig. 8(a) and can
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Figure 9. Third checkpointing strategy and resulting checkpoint distances for 10,000 time steps

be described by

l̂ = max{β(c, r − 2), l − β(c− 1, r)} .

For the small example in Section 3 (i.e., l = 100 and c = 5), one obtains for the compu-
tation of the 64th adjoint state the following state checkpoint distribution.

0 30 45 55 61

Hence, this checkpoint distribution fits the resilience distance of 30. For the larger exam-
ple considered in this section, the effects on the checkpointing distribution are illustrated
in Fig. 8(b). As can be seen, the number of time steps between two consecutive state
checkpoints can be dramatically reduced.

One can observe in the Figs. 7(b) and 8(b) that the distance between two consecutive
state checkpoints decreases monotonically in most cases but unfortunately not always
making it difficult to explain the surprisingly good complexity result for the binomial
checkpointing with resilience. For this reason, we examine the counterintuitive approach
of maximizing the distances between two consecutive state checkpoints by choosing

l̂ = min{β(c, r − 1), l − β(c− 1, r − 1)}

as illustrated also in Fig. 9(a). The resulting checkpointing distances are shown in
Fig. 9(b) and decrease monotonically. One can also prove, that this property always
holds. For this purpose, we first need the following result.

Lemma 4.1 The function f : N 7→ N, f(c) = β(c, r), is monotonically increasing for any
given fixed value of r ∈ N ∪ {0}.

Proof. One has

β(c− 1, r) ≤ β(c, r) ⇔ (c+ r − 1)!

r!(c− 1)!
≤ (c+ r)!

r! c!
⇔ 1 ≤ c+ r

c
,

9
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which holds if r ≥ 0. �

Now, we prove the main theoretical result of this section:

Theorem 4.2 For a given time step number l > 1 and a state checkpoint number c ≥ 2,
the checkpointing strategy

l̂ =

{
β(c, r − 1) if β(c, r − 1) + β(c− 1, r − 1) ≤ l ≤ β(c, r) (5)

l − β(c− 1, r − 1) if β(c, r − 1) ≤ l ≤ β(c, r − 1) + β(c− 1, r − 1) (6)

yields an optimal (i.e., time-minimal), checkpointing schedule, where the distances be-
tween the checkpoints are monotonically decreasing.

Proof. The time minimality follows from Eq. (4) with [5, Prop. 1]. To prove the mono-
tonicity, we have to examine all possible cases. For this purpose, assume first that
l̂ = β(c, r− 1), and let l̃ denote the place of the subsequent checkpoint. Now, we have to
distinguish two situations. If l̃ = β(c− 1, r − 1), then one obtains

l̂ = β(c, r − 1) =

(
c+ r − 1

r − 1

)
=

(
c+ r − 2

r − 1

)
+

(
c+ r − 1

r − 1

)
︸ ︷︷ ︸

≥0

≥
(
c+ r − 2

r − 1

)
= β(c− 1, r − 1) = l̃,

proving the assertion for this case. If l̃ = l− l̂− β(c− 2, r− 1) holds, we can exploit that

β(c− 2, r) ≤ l − l̂ ≤ β(c− 1, r − 1) + β(c− 2, r − 1)

yielding

l̃ = l − l̂ − β(c− 2, r − 1) ≤ β(c− 1, r − 1) + β(c− 2, r − 1)− β(c− 2, r − 1)

= β(c− 1, r − 1) ≤ β(c, r − 1) = l̂,

where the last inequality follows from Lemma 4.1 for r ≥ 1. Hence, the assertion is true
also in this case.

Second, assume that l̂ = l − β(c − 1, r − 1). Once more, we have to distinguish two
situations. For the case l̃ = β(c− 1, r − 1), we can exploit that

β(c− 1, r − 1) + β(c− 2, r − 1) ≤ l − l̃ ≤ β(c, r − 1)

yielding

l̂ − l̃ = l − β(c− 1, r − 1)− l̃ ≥ β(c− 1, r − 1) + β(c− 2, r − 1)− β(c− 1, r − 1) ≥ 0,

and therefore the desired relation l̂ ≥ l̃. Finally, we have to consider the case l̃ = l − l̂ −
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β(c− 2, r − 1). Then, it follows with

l̂ = l − β(c− 1, r − 1) ≥ β(c, r − 1)− β(c− 1, r − 1) =

(
c+ r − 1

r − 1

)
−
(
c+ r − 2

r − 1

)
=

(
c+ r − 2

r − 2

)
+

(
c+ r − 2

r − 1

)
−
(
c+ r − 2

r − 1

)
=

(
c+ r − 2

r − 2

)
= β(c, r − 2)

that

l̂ − l̃ = l − β(c− 1, r − 1)−
(
l − l̂ − β(c− 2, r − 1)

)
= l̂ + β(c− 2, r − 1)− β(c− 1, r − 1)

≥ β(c, r − 2) + β(c− 2, r − 1)− β(c− 1, r − 1)

=

(
c+ r − 2

r − 2

)
+

(
c+ r − 3

r − 1

)
−
(
c+ r − 2

r − 1

)
=

(
c+ r − 3

r − 3

)
≥ 0,

proving the assertion also for this last case. �

An immediate consequence of this strategy for choosing the next checkpoint is that the
distance between the last state checkpoint set during the first forward integration and
the state l is minimized. This observation will be used later in the numerical comparison
of the different approaches. Based on this result, to determine the minimal checkpoint
distance that can be achieved, one has to check only the corner cases. These corner cases
occur either when one switches from case 1 to case 2 with the same value of r or when
one switches from case 2 to case 1 and the value of r increases by one. However, all corner
cases have to be examined because there is no additional monotonicity as illustrated by
the next lemma.

Lemma 4.3 There exist li, ci, ri, i = 1, . . . , 4, such that

β(c1, r − 1) > l1 − β(c1 + 1, r1 − 1), l3 − β(c3 − 1, r) > β(c3 + 1, r3 − 1),
β(c2, r − 1) < l2 − β(c2 + 1, r2 − 1), l4 − β(c4 − 1, r) < β(c4 + 1, r4 − 1)

Proof. Choosing l1 = 20000, c1 = 21, r1 = 5 yields β(c1, r1 − 1) = 10625 > 9374 =
l1 − β(c1 + 1, r1 − 1). For l2 = 10000, c2 = 25, r2 = 4, one has β(c2, r2 − 1) = 4960 <
5040 = l2 − β(c2 + 1, r2 − 1). Setting l3 = 10000, c3 = 139, r3 = 3, it follows that
l3 − β(c3 − 1, r3) = 270 > 141 = β(c3 + 1, r3 − 1). For l4 = 15000, c4 = 22, r4 = 5, one
obtains l4 − β(c4 − 1, r4) = 2350 < 2600 = β(c4 + 1, r4 − 1). �

From a practical point of view, one can now compute the corner cases for a given
number l of time steps to determine the number of state checkpoints required to achieve
a desired resilience distance that does not interfere with the runtime optimality of the
binomial checkpointing together with an acceptable repetition number, that is, time to
required to compute the adjoint information.

To illustrate the development of the achievable resilience distance d, we list some
examples in Table 1 referring to one, two, and five years of physical time, as mentioned
in Section 1.
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Table 1. Resilience distances d for different values of l and r

l 350 000 700 000 1 750 000
r 4 4 4
c 52 62 78
d 26 235 43 680 86 260

r 3 3 3
c 127 160 217
d 8256 13 041 23 871

r 2 2 2
c 836 1182 1870
d 837 1183 1871

5. Other Checkpointing Approaches for Resilience and Comparisons

In this section we describe other approaches that can be used for restarting checkpointing
and adjoint checkpointing. For this purpose, one has to keep in mind the application that
motivated the research presented in this paper. That is, there is a fixed time limit T when
the execution of the adjoint computation must be interrupted the latest as explained in
Sec. 1. When ta denotes the time needed for the execution of one adjoint step, the
inequality

(r + ta)d ≤ T,

with r being again the repetition number, ensures that the adjointing of no more that d
time steps is possible within this time limit. Hence, if one chooses for given l, d, and ta,
the number of checkpoints such that the last inequality holds, the binomial checkpointing
with resilience can be used to compute the required adjoint information.

Nevertheless, we compare the proposed binomial checkpointing with resilience also with
other checkpointing appoaches that aim at resilience. For this purpose, we considered
again one, two, and five years of physical time yielding the number of time steps as shown
in Table 1 and breakdowns occuring at different places in the first forward integration
and during the actual adjoint computation.

5.1 Continuous Checkpointing

In continuous checkpointing, a simulation containing l time steps is allowed to use c
persistent checkpoints for binomial checkpointing. Up to the very end of the first forward
integration, at least one state checkpoint is free. This free state checkpoint is overwritten
whenever possible until it must serve as a state checkpoint for the binomial checkpointing
(see Fig. 10). As long as the time to write a state checkpoint is practically negligible, this
approach provides immediate recovery until the storage for the last free state checkpoint
must be used for the binomial checkpointing.

Hence, this checkpointing strategy does not require any additional means to cover
resilience. Therefore, it would be the ideal case. However, usually it is not possible to
store all state checkpoints in persistent memory and to retrieve them with negligible time
when needed. Therefore, we just sketch this possibility but do not analyse it further.

From a theoretical point of view this ideal checkpointing strategy for resilience is

12
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Figure 10. Checkpoint distribution using regular revolve with continuous checkpoints. Checkpoints with the same
color are to the same location.
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Figure 11. Checkpoint distribution at first adjoint step using regular revolve with an additional resilience check-
point. Checkpoints with the same color are to the same location.

interesting since it contradicts the so-called checkpointing stability that can be observed
in the optimal checkpointing strategies.

5.2 Single Recovery Checkpoint

An implementable approach is given by the single recovery checkpoint approach. Having
a total number of c state checkpoints available, then c − 1 checkpoints are used for the
binomial checkpointing of the state (see Fig. 11). An additional checkpoint is used to
store the state of the computation at intervals of resilience distance d irrespective of
when the binomial checkpointing method stores its state checkpoints.

Hence if no breakdown occurs, the minimal number of time steps executed by the
binomial checkpointing with c− 1 state checkpoints for adjointing l time steps equals

lr − β(c, r̃ − 1)

with r̃ such that β(c− 1, r̃ − 1) < l ≤ β(c− 1, r̃). Since here one state checkpoint less is
used for the adjoint computation this number must be larger than the minimal number
of time steps required for the adjoint computation if all c state checkpoints are used
for the adjoint computation and the values of l, c, r, and d are such that the resilience
distance does not interfere with the optimality of the binomial checkpointing. Hence, if
no breakdown occurs at all, the binomial checkpointing with resilience leads to a smaller
runtime for the adjoint computation. If a breakdown occurs the cost to restart the adjoint
computation is depends on the place of the breakdown and the state checkpoints stored.
Therefore, the number of time steps required for the restart is difficult to determine in a
general way.

For the numerical test that we performed the binomial checkpointing with resilience
yields in more than 75 % of the tested configurations a smaller number of time steps
to be executed than the single recovery checkpoint approach. Furthermore, the single
recovery checkpoint approach does not take a given time limit T into account to prepare
for a suitable restart making the application of this strategy for our target application
difficult.

13
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Figure 12. Checkpoint distribution using two-level checkpointing. First resilient, state checkpoints are stored
at coarse granularity by running the unmodified function. The lower level uses binomial checkpointing without

resilience considerations.

5.3 Two-Level Checkpointing

In two-level checkpointing, a simulation containing l time steps can be divided into l1
outer intervals each of which contains l2 time steps, such that l = l1 ∗ l2. In the first
forward integration, the outer level is checkpointed at regular intervals for resilience. In
the adjoint sweep, at the start of each l1i

time step, the state checkpoint written at the
end of the l1i−1

time step is read (see Fig. 12). To compute the adjoint of the l1i

th step,
binomial checkpointing is used with a repetition number r2 such that

β(c2, r2 − 1) < l2 ≤ β(c2, r2) . (7)

Once the adjoint is computed, the adjoint is checkpointed for resilience. If a failure occurs
in the forward integration, the last outer level state checkpoint is used for recovery and
at most 2 ∗ l2 forward steps need to be recomputed. If a failure occurs in the adjoint
integration, then the appropriate forward state checkpoint and adjoint checkpoint can
be used for recovery.

With respect to the resulting time complexity, this approach suffers from the equally
distributed state checkpoints at the outer level. If no breakdown occurs, the resulting
number of time steps to be executed is given by

l1 ∗ (l2r2 − β(c2, r2 − 1)) ,

which again must be larger than the temporal complexity of the binomial checkpointing
when resilience does not interfere with optimality. For all test configurations that we
considered this approach leads also to a significantly higher temporal complexity that
the binomial checkpointing with resilience when breakdowns occur.

6. Conclusions and Future Work

We have presented a resilient binomial checkpointing algorithm that supports the restart
of the adjoint computation after a failure of the computing system. The modified algo-
rithm maintains the optimality of binomial checkpointing while limiting the maximum
distance between successive state and adjoint checkpoints. The required changes were
integrated in the software package revolve for binomial checkpointing and will be made
available on the web site of revolve as stated at the tool list web site on www.autodiff.org.

From a theoretical perspective, it would also be interesing to introduce not a fixed
distance for the adjoint checkpoints but to coordinate the storing of an adjoint checkpoint
with the progress of the adjoint computation. This would reduce the number of time steps
executed to reconvene the adjoint computation. Future work be will dedicated to this
subject.
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We plan to apply the resilient binomial checkpointing algorithm to compute the ad-
joint of the MITgcm. It has previously been differentiated by OpenAD [10] using the
original binomial checkpointing algorithm. This requires us to examine the additional
data that must be checkpointed in order to support restart of the application. This in-
cludes OpenAD’s tape data structures that are used to hold intermediate values as well
as global data structures that are used outside the time-stepping loop. We plan to use a
modified version of OpenAD’s template mechanism for revolve to support the restart of
the computation.
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